In situ alloying of Ti10Mo fused tracks and layers via laser powder bed fusion

نویسندگان

چکیده

Optimum process parameters for manufacturing a Ti10Mo alloy biomedical applications via the laser powder bed fusion (LPBF) were determined. Fused tracks produced over wide range of powers and scanning speeds, layers fused at varied hatch distances. The samples analysed continuity tracks, melting distribution Mo particles in layers, surface roughness, homogeneity matrix microhardness. analysis revealed that melted completely with only pockets concentrations, mostly peripheries due to pushing effect. Complete was small size (1 μm) used current experiment. addition enhanced wetting prevented pronounced balling From this study, parameter sets 150 W, 0.5 m/s 200 1.0 both distance 80 μm, obtained as optimum parameters. However, concentrations molten pool indicated further research required before ‘completely’ homogenous sample could be manufactured LPBF using elemental blends.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Functionalization of Biomedical Ti6Al4V via In Situ Alloying by Cu during Laser Powder Bed Fusion Manufacturing

The modern medical industry successfully utilizes Laser Powder Bed Fusion (LPBF) to manufacture complex custom implants. Ti6Al4V is one of the most commonly used biocompatible alloys. In surgery practice, infection at the bone-implant interface is one of the key reasons for implant failure. Therefore, advanced implants with biocompatibility and antibacterial properties are required. Modificatio...

متن کامل

Measurement of the Melt Pool Length during Single Scan Tracks in a Commercial Laser Powder Bed Fusion Process

Contact author: [email protected] Certain commercial equipment, instruments, or materials are identified in this paper in order to specify the experimental procedure adequately. Such identification is not intended to imply recommendation or endorsement by the National Institute of Standards and Technology, nor is it intended to imply that the materials or equipment identified are necessari...

متن کامل

Study of the Microstructure and Cracking Mechanisms of Hastelloy X Produced by Laser Powder Bed Fusion

Hastelloy X (HX) is a Ni-based superalloy which suffers from high crack susceptibility during the laser powder bed fusion (LPBF) process. In this work, the microstructure of as-built HX samples was rigorously investigated to understand the main mechanisms leading to crack formation. The microstructural features of as-built HX samples consisted of very fine dendrite architectures with dimensions...

متن کامل

Laser powder bed fusion of Ti-6Al-4V parts: Thermal modeling and mechanical implications

A continuum-scale modeling approach is developed and employed with three-dimensional finite element analysis (FEA), for simulating the temperature response of a Ti-6Al-4V, two-layered parallelepiped with dimensions of 10×5×0.06 mm during Laser Powder Bed Fusion (L-PBF), a metals additive manufacturing (AM) method. The model has been validated using experimental melt pool measurements from the l...

متن کامل

Thermographic Measurements of the Commercial Laser Powder Bed Fusion Process at NIST.

Measurement of the high-temperature melt pool region in the laser powder bed fusion (L-PBF) process is a primary focus of researchers to further understand the dynamic physics of the heating, melting, adhesion, and cooling which define this commercially popular additive manufacturing process. This paper will detail the design, execution, and results of high speed, high magnification in-situ the...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Manufacturing review

سال: 2022

ISSN: ['2265-4224']

DOI: https://doi.org/10.1051/mfreview/2022022